Johnson Hall, Room 106 2200 E. Red River St.
Victoria, TX 77901
www.VictoriaCollege.edu/TutoringCenter
361-571-6473

Solving for x with Fractions

Here's an example of how to do it:
$\frac{1}{3} x+\frac{1}{4}=7$
$1^{\text {st }}$ Find the Least Common Multiple of the Denominators

Your 2 Denominators:	Multiply by 2	Multiply by 3	Multiply by 4
3	6	9	12
4	8	12	

-Multiply them out until you find one that matches.
-3 and 4 share a LCM of 12 .
-So we multiply the entire equation by 12
$12\left(\frac{1}{3} \mathrm{x}\right)+12\left(\frac{1}{4}\right)=12(7)$
We multiply out the 12 and each number/fraction to get:
$\frac{12}{3} x+\frac{12}{4}=84$
We then divide each fraction...
$12 \div 3=4$ and $12 \div 4=3$
$4 x+3=84$
Last we solve for x ...
$4 x+3=84$
$3 \quad-3$
-So first we want to get rid of the constant, to do so
we must do the opposite of addition, which is subtraction
$\underline{4 x}=\underline{81} \quad$-Then we want to get rid of the constant in front of the x
44 because we want the x by itself. So we do the opposite of
$x=\frac{81}{4}$ multiplication, which is division, and we get a fraction. -And we want to keep it in fraction form.

